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ORIGINAL ARTICLE

Unsupervised categorization with individuals diagnosed as having
moderate traumatic brain injury: Over-selective responding

Darren J. Edwards & Rodger Wood

Swansea University, Swansea, Wales, UK

Abstract

Primary objective: This study explored over-selectivity (executive dysfunction) using a standard
unsupervised categorization task. Over-selectivity has been demonstrated using supervised
categorization procedures (where training is given); however, little has been done in the way of
unsupervised categorization (without training).
Methods and procedure: A standard unsupervised categorization task was used to assess levels
of over-selectivity in a traumatic brain injury (TBI) population. Individuals with TBI were
selected from the Tertiary Traumatic Brain Injury Clinic at Swansea University and were asked
to categorize two-dimensional items (pictures on cards), into groups that they felt were most
intuitive, and without any learning (feedback from experimenter). This was compared against
categories made by a control group for the same task.
Outcomes and results: The findings of this study demonstrate that individuals with TBI had
deficits for both easy and difficult categorization sets, as indicated by a larger amount of one-
dimensional sorting compared to control participants. Deficits were significantly greater for the
easy condition.
Conclusions: The implications of these findings are discussed in the context of over-selectivity,
and the processes that underlie this deficit. Also, the implications for using this procedure as a
screening measure for over-selectivity in TBI are discussed.
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Introduction

Category learning is an essential part of making sense of the
world around us, by organizing information most efficiently
through an information minimization approach. Disruption
in the ability to form categories has been shown to translate
into difficulties with learning language and perceptual dis-
criminations [1,2]. It is, therefore, important to study cate-
gorization abilities in several different populations, including
people with TBI, because this is a condition which predo-
minantly implicates the prefrontal cortex, often without ser-
ious impairment of measurable aspects of memory or
intellectual ability [3,4]. Instead, and more frequently, defi-
cits in decision-making and planning daily activities are
present [5], as well as the flexibility of rule use as part of
executive function [6,7]. In experimental settings, the pre-
frontal cortex has been shown to be important when com-
pleting complex tasks which require explicit rules, such as
those found in categorization tasks [8]. In addition to this,
individuals with TBI have demonstrated a lack of ability in
making categorical discriminations between the different
features of objects [9].

There are many types of categorization paradigms and
each relies upon different aspects of cognition. For example,

supervised categorization [2], which uses feedback from the
experimenter to learn which items belong to which existing
categories. In experiments, the participant is given several
items and receives corrective feedback when an item is placed
in the wrong category. Categorization attempts to identify
how individuals build knowledge about the world, by under-
standing how information about items around them is used
(e.g. dimensions, colour, semantics, etc.) to form categories.
A real world example of this could be learning the category of
‘table’ or ‘chair’ for the first time. A table can have several
shapes (long, short), colours, functions (to eat, to work),
possible labels (table, desk), etc. When learning this for the
first time, corrective feedback is given from the environment
(maybe a parent or a teacher in this case), allowing the
individual to learn and eventually form a complete category
concept for ‘table’. Experiments using supervised categoriza-
tion procedures have demonstrated that, after TBI, individuals
have difficulty abstracting from a prototype. Prototype
abstraction is a form of supervised categorization (where
corrective feedback is given) that helps individuals learn the
pre-specified category structure of a set of items when given
feedback about whether their decisions are correct (i.e. using
the average representation of a learned category and applying
it to other situations) [10].

Research in autism spectrum disorders [2] has indicated that
over-selectivity (the inability to process all the dimensions of
items) is responsible for an inability to abstract prototypes.
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Although autism is quite different from TBI, both populations
have demonstrated over-selective responding (attentional/cate-
gory coherence problems) with categorization tasks. Over-selec-
tivity (the dependent measure in the present study) is where an
individual uses some parts of the environment at the expense of
others (e.g. placing too much attention on one property of the
items and ignoring or failing to process others) [2]. Various
cognitive deficits lead to over-selectivity and there are the inter-
ventions used to remediate them [11]. Over-selectivity in an
autistic population has been attributed to attentional deficits
[12], learning deficits [2] and retrieval deficits [13]. Also,
over-selectivity in supervised categorization tasks has been
identified in other clinical conditions, such as TBI [10,14].

The current study uses an unsupervised categorization pro-
cedure [11] which involves no learning on the part of the
participant. It is based, instead, on the intuitive similarity of
items [15]. For example, the participant is given a range of
items and must categorize these on the basis of what they feel
is most intuitive, based on category coherence [16].
Unsupervised categorization is, therefore, based on attentional
and coherence aspects of cognition, as there is no pre-defined
rule from which to learn how to categorize. For example, when
you see items which you have never encountered before, you
could group them into categories which you feel best discrimi-
nates the items, maybe based on size or colour, etc., but there
will be no, or very little, semantic information upon which to
base the category decision. This type of task is designed to
explore categorizing without prior learning, based on more
attentional/category coherence mechanisms and not learning
mechanisms. The identification of specific cognitive deficits
(i.e. over-selectivity) during unsupervised categorization in
TBI could have important implications for the types of inter-
ventions used and developed in clinical practice, for example,
assessing attentional/coherence based over-selectivity (through
unsupervised categorization procedures) as well as more learn-
ing based over-selectivity (as found with supervised categor-
ization procedures).

Up to this present time, there has been no research exam-
ining the abilities of a TBI population using the unsupervised
categorization paradigm, which is the primary aim of this
study. The over-selectivity in a TBI population when using a
supervised task makes it reasonable to assume that over-
selectivity will be found in an unsupervised task because,
although these tasks use different cognitive processes, TBI
patients tend to have short-term decision and planning-based
problems [5], which is consistent with the type of cognition
the unsupervised categorization task demands. Therefore, it is
likely that the TBI population will display greater over-selec-
tivity compared to the control group.

Method

Participants

The TBI population was selected from a cohort referred to the
Head Injury Clinic at Swansea University (n = 44). Patients
were referred because they exhibited long-term executive
deficits which affected their everyday activities and imposed
constraints on community independence. In all cases, the
presumption of executive deficits was based on reports

made by the patient’s relatives, then confirmed through a
semi-structured clinical interview.

TBI severity was determined by Glasgow Coma Scores at
the time of hospital admission (GCS = 9.54, SD = 1.2),
indicating moderate brain injury. The mean time between
injury and participation was 3.2 years (SD = 1.1). The control
group were 44 members of the general public that were
matched for age (TBI = 34.7, SD = 12.2; control = 36.2,
SD = 13.5) and intelligence (TBI mean IQ = 98.3, SD =
12.6; control IQ = 99.4, SD = 14.7) as measured by the
WAIS III [17].

The categorization task

A standard approach for measuring one vs two dimensional
sorting was employed as in previous studies [11,18–20] (see
Figure 1). Stimuli were based on two dimensions (body and
legs) and the experimenter counted how many categorization
sorts used both the leg and body dimensions. If the participant
categorized all big leg items with other big leg items and all
small leg items with other small leg items, but ignored the body
size for any of the items, then this would be classified as a one-
dimensional (over-selective) sort. A simple example is of four
items with different dimensions, e.g. ItemA, legs at 10 cm, body
at 11 cm; Item B, 10 cm for legs and 11 cm for body; Item C,
10 cm for legs, 1 cm for body; and Item D, 10 cm for legs and
1 cm for body. If the category ‘ABC’ was made and ‘D’ was
categorized as separate then ‘C’ would be counted as a one
dimensional sort (one count of over-selectivity), as only the
one dimension of legs was used and not body. If both dimen-
sions had been use, then two categories of ‘AB’ and ‘CD’would
have been produced. This would, therefore, have been counted
as two, two-dimensional sorts and no counts of over-selectivity.

Figure 2 illustrates this point with a more specific example
for an Easy Categorization task. A category formation of {0, 1,
2} {6, 7, 8} {5, 3, 4} {11, 9,10} {12, 13, 14, 15} is suggested
by the simplicity model [11,18–20], which optimizes items
within categories based on the number of dimensions used
when categorizing items using two dimensions. If a classifica-

Figure 1. A representation of the stimuli used in all experiments, where
the body and legs of the items change in size between items.
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tion is made whereby 10 is categorized with {0, 1, 2} instead
of {11, 9} then that would be recorded as one count of over-
selectivity (one dimensional sorting), as one of the dimensions
of 10 is identical in size to that of the items (0 and 2) in the
category {0, 1, 2}, whilst the other dimension is completely
different in size. This would suggest that the participant was
not using both dimensions, which would produce a category
{11, 9, 10}, where both dimensions are similar in size, as
suggested by the simplicity model [11,21–23]. If the outcome
category {0, 1, 2, 10} was created then this would demonstrate
that the participant would only be using a single dimension in
categorizing the item and, therefore, an example of over-selec-
tivity (one dimensional sorting).

For this study (see Figure 1) the stimuli used resembled
simple two dimensional schematic representations (spiders)
with two dimensions that were altered between stimuli, the
legs and the body, which were between 40–80 mm (using a
Weber fraction of 8%; see Pothos et al. [22] for a full expla-
nation of the computational principles). The stimuli were
presented on individual cards and each set (two sets in total)
had 16 items, each differing in how intuitive (how easy) they
were to categorize. The simplicity model was used [21–23] to
develop the category structure in terms of how easy or diffi-
cult (how intuitive) they were to categorize. When given
several items in a set of stimuli using two dimensions, the
simplicity model uses the spatial distances between the items
dimensions, by attempting to reduce the spatial distance and
the number of comparisons needed, using categories. The
organization of the model is complex and uses a computation
term of code-length to identify maximum within-group simi-
larity and minimum between-group similarity [21–23]. What
is important in terms of the present study is not the complex
way the model computes the categories, but that the outputted
categories of the simplicity model are those which are optimal
for using two dimensions when given particularly noisy sti-
muli sets, a finding validated with large participant numbers
[21–23]. Again, this model was used just to develop the
category structures (i.e. to give sizes for the legs and bodies
for each item) in terms of easy and difficult. It is not used in
any analysis for this present study. The two categories used in
this study, based on the simplicity model (see Figure 2) were
‘Five Clusters’, which is the easiest, and the ‘Random
Clusters’, which is the more difficult to categorize.

Procedure

Participants were assessed individually. Stimuli were shuffled
and taken out of a folder in random order then spread out on a
large table. Instructions were provided (in scripted form) which
asked the participant to categorize the items in a way they felt
was most intuitive based on perceptions of similarity. They
were also instructed that similar objects should end up in the
same categories and that any number of categories were
allowed. There was no time limit on this task; however, the
task typically lasted just a few minutes. Participants were not
influenced in how they made the categories and, if they asked
any questions during the task, they were redirected to the
instructions. The stimuli sets were shuffled after each partici-
pant. The sets were also counterbalanced between participants
so that there were no order effects.

Results

Table I shows the number of one-dimensional classifications
that were made by the TBI and the control group for the
conditions Easy and Difficult. On inspecting the data, both
TBI and control groups produced more one-dimensional
(over-selective) sorts for the Difficult condition, as compared
with the Easy condition. The TBI population had a greater
number of one-dimensional sorts for both the Easy and
Difficult conditions compared to the control group.

A mixed two-factor Analysis of Variance (ANOVA) was
used with participant group (TBI or control) as the between
factor and the categorization task difficulty (Easy or Difficult)
as the within level, with the number of one-dimensional sorts
(over-selectivity) as the DV. The results showed a significant
increase in the number of one dimensional sorts for both
groups when task difficulty increased (F(1, 86) = 113.628,

Figure 2. Stimuli spread, x-axis refers to the body and the y-axis refers to the height of the items in CM. These are the classifications predicted as most
intuitive by the simplicity model [15]. The top image refers to the Five cluster, ‘Easy’ stimuli set and the lower one the Random cluster, ‘Difficult’
stimuli set.

Table I. The mean and standard deviations of one dimensional sorting
between the control and TBI conditions as well as within the category
difficulty conditions.

Control TBI

Easy 0.3 (0.59) 1.05 (0.65)
Difficult 1.7 (1.07) 2.05 (0.68)
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p < 0.001, for the main effect, task difficulty). When compar-
ing the interaction between task difficulty and participant
group (TBI or control), the results indicated that the number
of one-dimensional sorts made by TBI and control groups
were significantly different (F(1, 86) = 3.277, p < 0.05)
which suggests (along with the descriptive statistics) that the
TBI had significantly more one-dimensional sorts, compared
to the control, across both conditions. Crucially, the interac-
tion shows that the data for both groups were ordinal, allow-
ing the main effect to be supported. The other main effect, the
number of one dimensional sorts between groups, was sig-
nificant (F(1, 86) = 22.599, p < 0.001), indicating that the
TBI group had a greater number of one-dimensional sorts
compared to the control group.

To analyse this further, a series of t-tests were used to
compare post-hoc interactions and a Bonferroni correction was
used as a conservative estimate for alpha (0.01). For TBI vs
control in the Easy condition the results (which along with the
descriptive statistics) show that the TBI group were making
more one-dimensional sorts as compared with the control
group for the Easy condition (where t(86) = 6.051, p < 0.001).
In the Difficult condition the results again indicated that the TBI
group made more one-dimensional sorts as compared to the
control (t(86) = 1.784, p = 0.04), although this was above the
conservative Bonferroni corrected alpha of 0.01. For the TBI
group, Easy vs Difficult categorizing was significantly different
(t(43) = 7.46, p < 0.001), indicating there were more one-
dimensional sorts for the difficult condition. Finally, for the
control group, Easy vs Difficult, categorizing revealed more
one-dimensional sorts for the more difficult condition as com-
pared to the Easy condition (t(54) = 8.518, p < 0.001).

Discussion

The present study explored whether there would be greater
levels of one-dimensional sorts in a TBI population as com-
pared to a control using a standard unsupervised categoriza-
tion task with two levels of task difficulty. One-dimensional
sorts were used as an indicator of over-selectivity in both the
TBI and control populations.

The main findings were that there were more one-dimensional
sorts when the task difficulty increased for both groups and that
the TBI group displayed more one-dimensional sorts than the
control group in both the Easy condition and the Difficult condi-
tions (in the Difficult condition it was marginally non-significant
when using a conservative Bonferroni correction).

The findings demonstrate that the TBI population were
over-selecting when using an unsupervised categorization
task. This means they have difficulty with tasks involving
attention and category coherence, which is consistent with
other work [24]. They also demonstrated that, by increasing
task difficulty, over-selectivity increases, both in control and
clinical populations. These findings are also largely consistent
with work conducted in the area of autism, when using the
same task [11]. Although autism and TBI are very different
clinical disorders, there may be some commonality in the
types of cognitive processes being deficient (under-developed
or damaged); therefore, some of the interventions and proto-
cols for treatment and diagnosis (especially in relation to
diagnostics for over-selectivity) may be useful for both

populations. However, this is entirely speculative at this
stage and would need much further work to verify.

In terms of the present results, evidence is given which
seems to support the case for attentional/coherence-based
deficits, as unsupervised categorization does not involve
aspects of learning (whereas supervised categorization
does). This does not mean that learning-based deficits are
not present in TBI when using categorization tasks. The
results are also complimentary to previous work [2] and
help provide a bigger picture of cognitive deficits in a TBI
population in relation to over-selectivity and categorization.

In terms of potential applications, these findings have impor-
tant implications for possible methods for screening over-selec-
tivity in a TBI population and identifying the most appropriate
forms of interventions to reduce over-selectivity in this group. It
will also be important to study other types of category learning
in TBI populations, such as relational category paradigms [25],
using abstract relational properties (such as ‘bigger than’ and
‘smaller than’) based on inference learning, rather than specific
dimensional sizes, when categorizing. As such, this work may
also be integrated into broader models of categorization, based
on cognitive and behavioural science [26], to allow for specific
TBI intervention protocols being developed which could diag-
nose and remediate over-selectivity.

Further studies could explore milder forms of TBI to see
whether similar cognitive deficits of over-selectivity occur, as
there should be no expectation that there should be until
empirically verified. Finally, an exploration could be made
in terms of how these findings fit in terms of neurological
mapping of over-selectivity through fMRI work. To date,
fMRI work has not been conducted specifically for over-
selectivity. This would potentially allow new ideas from
empirical findings to further develop the theoretical and
applied levels of research into cognitive dysfunction after
brain injury. It would also allow for further understanding
as to the very specific cognitive components involved in over-
selectivity in TBI. For example, it could provide support for
an attentional, retrieval or information process based theory.
These are all exciting avenues of research for the future.
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