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Supplementary 1 
 

There is a likelihood value for each sensory stimulation given a world state, and this is 

given by 𝑃(𝑥1 ⎸𝑤).  These values are indicated in the first two columns of Table 1B, for 

instance, 𝑃(𝑥1 ⎸𝑤2) = ¾ (75%). Prior probabilities of world states 𝑤 are given in the third 

column, and the fourth column indicates the fitness associated with each world state. In this 

example, the world states contain a type of resource such as food, whereby 𝑤1 corresponds to 

highly healthy but rare food, whilst 𝑤2  and 𝑤3  correspond to less healthy but more common 

food, and with 𝑤3  being the least healthy. Observers are given two sensory state experiences 

𝑥1 and 𝑥2, and they must choose between them.  

 In the case of a truth strategy observer, using Bayes’ theorem, the truth estimate for 𝑥1 

is 𝑤2  (see step 2) whilst for 𝑥2 the estimate is 𝑤3  (see step 3). To compute the truth estimate, 

Bayes’ theorem must be used. First, however, it is important to note (particularly for step 4) 

that the set 𝑊 is considered, mathematically, a compact Borel space whose collection of 

measurable events is a σ-algebra denoted as 𝐵.  < 𝑊, 𝐵 > has a prior probability measure 𝜇 

on 𝐵. The uniform or Borel probability measure of 𝑊 is denoted as 𝑑𝑤 , and if this a priori 

measure is assumed, this satisfies 𝜇(𝑑𝑤) = 𝑔(𝑤)𝑑𝑤. In this case, 𝑔 ∶ 𝑊 → 𝑅+ is some non-

negative measurable called the density of 𝜇 and satisfies ∫ 𝑔(𝑤)𝑑𝑤 = 1. This gives the 

structure of the world. So, to compute the truth estimate, the probability of each stimulation 

ℙ(𝑥1) and ℙ(𝑥2) must be determined from Bayes’ theorem  𝑃(𝑤|𝑥0) =
𝑃(𝑥0|𝑤)∙𝑃(𝑤)

𝑃(𝑥0)
 (see 

equation 1 for full description) in the following way: 

 

Step 1. First, 𝑃(𝑥0) for sensory states 𝑥1 and 𝑥2 will be used as the denominator in Bayes’ 

theorem in step 2.  

ℙ(𝑥1) = (𝑥1 ⎸𝑤1)𝜇(𝑤1) + (𝑥1 ⎸𝑤2)𝜇( 𝑤2) +  (𝑥1 ⎸𝑤3)𝜇( 𝑤3)      
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ℙ(𝑥2) = (𝑥2 ⎸𝑤1)𝜇(𝑤1) + (𝑥2 ⎸𝑤2)𝜇( 𝑤2) +  (𝑥2 ⎸𝑤3)𝜇( 𝑤3)      
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Step 2. Then from the numerator of Bayes’ theorem 𝑃(𝑥0|𝑤) ∙ 𝑃(𝑤) posterior probabilities 

of the world states, given 𝑥1 can be given and then divided by the denominator 𝑃(𝑥1) value 

given in step 1: 

𝑃(𝑤1 ⎸𝑥1) = 𝑃(𝑥1 ⎸𝑤1)) ∙
𝜇(𝑤1)
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𝑃(𝑤2 ⎸𝑥1) = 𝑃(𝑥1 ⎸𝑤2)) ∙
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𝑃(𝑤3 ⎸𝑥1) = 𝑃(𝑥1 ⎸𝑤3)) ∙
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These indicate that the maximum a posterior truth estimate for stimulus 𝑥1 is 𝑤2  (=0.69).   

Step 4. Given a fitness function 𝑓: 𝑊 → [0, ∞) that assigns to each state a non-negative 

fitness value, the expected fitness function of a perceptual state 𝑥 is 𝐹(𝑥) = ∫ 𝑓(𝑤)ℙ(𝑑𝑤 |𝑥) =

∫ 𝑓(𝑤)𝑔(𝑤|𝑥)𝑑𝑤.  Using this expected fitness function, the expected-fitness values of the 

different sensory stimulations 𝑥1 and 𝑥2 are respectively: 
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As 𝑥2 has a larger expected fitness than 𝑥1, 𝑥2 is selected.  

 

Supplementary 2 

 

In other simulations, greater complexity has been accounted for such as when using agent-

based models that utilize Monte Carlo simulations. This is done by varying the number of 

territories thus shifting the boundaries, the number of resources per territory, and the 

correlations between resources (Mark, Marion, & Hoffman, 2010).  In all of these cases, the 



fitness (interface) only strategy has been shown to bring the truth perceptual strategy to 

extinction. In some cases, however, it has been suggested that by accounting for even greater 

complexity by adding another layer of real-world modeling in the form of simulating sudden 

environmental changes, then the truth perceptual strategy brings the fitness-only strategy to 

extinction (Charan, Gharibzadeh, & Firouzabadi, 2021).  However, this approach assumes 

that the interface cannot adjust to sudden changes in the environment 𝑤, but this is unlikely 

to be the case. As the interface is mapped directly to fitness, its perceptual strategy is not 

concerned with the actual changes in the physical environment, instead it is only concerned 

with the change in fitness. Having to process all the new information using a Bayesian truth 

MAP would have additional cost to energy of the organism, and this information cost to the 

organism using the fitness-only strategy would be much lower (as the information content 

described by information theory is lower).  

This can be shown in a simple way, through the same evolutional game theory 

approach used earlier (in Table 2). In the same simple example, where there are three world 

states, 𝑊 = {𝑤1 , 𝑤2, 𝑤3} and two sensory state stimulations 𝑋 = {𝑥1,𝑥2}, the only difference 

in this second turn of the game is that there has been a sudden environmental change that has 

flipped all of the values of fitness 𝑓(𝑤𝑗), prior probabilities 𝑃(𝑤𝑗), and the likelihood of 

world 𝑤𝑗 given some sensory state 𝑥1 and 𝑥2, 𝑃(𝑥 ∣ 𝑤𝑗) as shown in Table 3. For instance, 

the fitness values in the first game for worlds 𝑤1, 𝑤2, and 𝑤3  were 19, 5, and 4 respectively, 

and in game two they were respectively 6, 5, and 21. These extreme changes simulate a 

sudden change in the environment.  

In the example above, using the same mathematical approach as for Table 2, given a 

choice between𝑥1 and 𝑥2, the truth strategy chooses  𝑥2 = 0.69, whereas given a choice 

between 𝑥1 and 𝑥2, the fitness strategy chooses 𝑥1 = 14.8.  As 14.8 is a higher fitness value 



than 0.69, fitness once again drives the truth strategy into extinction despite the sudden 

change in the environment.  
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The relational frame of distinction can be simply defined as the negation of equivalence, and 

this can be denoted as ¬(𝐴 ~ 𝐵), or in another way 𝐴 ⊗ 𝐵, therefore ¬(𝐴 ~ 𝐵) ≡ 𝐴 ⊗ 𝐵.  

In set theory, this can be expressed as 𝐴 − 𝐵 = { 𝑥 ∣ 𝑥 ∈  𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵 }.  

To express a relational frame of similarity or sameness in set theory such that 𝐴 = 𝐵 

and 𝐵 = 𝐴 this can be done in the following way (assuming all elements within the sets are 

the same): Since 𝐴 is equal to 𝐵, this can be represented as 𝐴 = 𝐵, and this means that the set 

𝐴 and set 𝐵 have the same elements. Also, as 𝐵 is equal to 𝐴, this can be represented as 𝐵 =

𝐴, and this means that the set 𝐵 and set 𝐴 have the same elements. This can be represented 

through set theory as follows: 

𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵 = {𝑥 ∣ 𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑒𝑖𝑡ℎ𝑒𝑟 𝐴 𝑜𝑟 𝐵,𝑜𝑟 𝑏𝑜𝑡ℎ}.  

This means that the intersection of 𝐴 and 𝐵 is equal to the union of 𝐴 and 𝐵, and this is 

because all of the elements that belong to 𝐴 also belong to 𝐵, and all of the elements that 

belong to 𝐵 also belong to 𝐴.  Additional propositions could be added if only some elements 

of the sets were the same and others were not.  

A relational frame of hierarchy can be expressed using set theory by defining a set of 

elements, where each element belongs to one or more subsets, and each subset belongs to one 

or more supersets. The hierarchy is then defined by the relationships between these subsets 

and supersets, such as "is a subset of" or "is a superset of".  In terms of logic, the hierarchy 

can be represented using propositional logic statements, where each element is represented by 

a propositional variable, and the relationships between subsets and supersets are represented 

by logical operators such as AND, OR, IMPLIES, etc. For example, if 𝐴 and 𝐵 are subsets of 



𝐶, such that 𝐴 = 𝐴𝑙𝑠𝑎𝑡𝑖𝑜𝑛, 𝐵 = 𝐷𝑜𝑔, and 𝐶 = 𝑚𝑎𝑚𝑚𝑒𝑙  then the statement "𝐴 and 𝐵 are 

subsets of 𝐶" can be represented as 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶  where ⊆ is the subset symbol. More 

concretely 𝐴 ⊆ 𝐶 iff Ɐ 𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) and 𝐵 ⊆ 𝐶 iff Ɐ 𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶).  This means 

that for every element 𝑥 in 𝐴, it is also an element of 𝐵 and for every element 𝑥 in 𝐵, it is also 

an element of 𝐶. In other words, 𝐴 is a subset of 𝐵 and 𝐵 is a subset of 𝐶, indicating a 

hierarchical relationship between the sets, with 𝐴 at the lowest level, 𝐵 in the middle level, 

and 𝐶 at the highest level.  In logic, the hierarchy of the statement (if 𝐴 then 𝐵) and (if 𝐵 then 

𝐶) can be represented as  (𝐴 → 𝐵) ∧ (𝐵 → 𝐶), where → is a logical connective “implies”.  

Causal relational frames can be expressed as a relation symbol 𝑅 such as 𝑎𝑅𝑏 (where 

𝑅 as a specific relational property is explicitly defined given some context) or as a function 𝑓 

map to a set, such as 𝑓(𝐴) = 𝐵  which means that some functional relation 𝐴 causes 𝐵. This 

can also be expressed as 𝑓 ∶ 𝐴 → 𝐵, which depicts a function, such that 𝐴 implies 𝐵.  These 

functions are mathematical expressions and could include a transfer for function (ToF). 

Deictic perspective-taking relational relations are complex and dynamic frames that 

relate the self within some context such as spatially (HERE vs. THERE), temporally (NOW 

vs. THEN), and interpersonally (I vs. YOU). These can be expressed in logic using 

quantifiers, for example, the deictic relation “I-YOU” can be represented using the first-order 

predicate logic quantifiers “for all” (∀) “there exists” (∃).  For example, the statement “I am 

faster than YOU”, can be represented as ∀𝑥(person(𝑥) → (Fast(𝑥) →

Fast(𝐼)⋀Slow(you))).  This can be read as: “For all 𝑥, if 𝑥 is a person and 𝑥 is fast, then 𝐼 

am fast and you are slow.” Similarly, the spatial deictic relation HERE-THERE can be 

represented in the same way using qualifiers “for all” and “there exists”.  For example, the 

following statement “Over THERE is a book on the table” can be represented as 

∃𝑥(Book(𝑥)⋀ OnTable(𝑥)).  This reads as “There exists an 𝑥 such that 𝑥 is a book and 𝑥 is 



on the table.” These can also be expanded upon using set theory as shown with the other 

relational frames for more complex expressions.   

In the case of a transformation of stimulus function (ToF), where for instance, you are 

afraid of snakes, and then you are told by a snake expert they live in the local woods, a 

relational frame coordinating snakes with the local woods form.  With this coordination 

framing, the fear function from the snakes can then transfer to the woods (a ToF occurs).  

Again, a representation of this using logic and set theory can be made, whereby the set of all 

things you are afraid of, denoted here as 𝐹 = {𝑥 ∣ 𝑥 𝑖𝑠 𝑎 𝑠𝑛𝑎𝑘𝑒} and 𝐹 represents fear. Then 

as you frame snakes with the woods, this can be represented as a function typically donated  

as 𝑓, but here is denoted by 𝑇 to distinguish from other functions, whereby 𝑇(𝑥) = 𝑦, and 𝑥 

is a snake, whilst 𝑦 is the local woods. The transformation of the function of fear to the 

woods can then be represented as 𝑇(𝐹) = {𝑦 ∣

𝑦 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑤𝑜𝑜𝑑 𝑎𝑛𝑑 ∃𝑥(𝑥 𝑖𝑠 𝑎 𝑠𝑛𝑎𝑘𝑒 ⋀ 𝑇(𝑥) = 𝑦)}.  Explicitly, this translates into “the 

set of woods that you are afraid of is the set of all woods that are framed with a snake through 

the function  𝑇.” 

 

Supplementary 4 

Some example python code connecting two nodes that represent snake and woods as these 

are framed in connection.  

 

 

 

 

 

 

 

 



Supplementary 5 

Some example python code that represents the concept of a function, 𝑇, that transforms (ToF) 
the set of things you are afraid of, 𝐹, to the set of woods that you are no afraid of, 𝑊. 
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Here, a larger graph needs to be defined such as graph 𝐻.  The structure of the graph could 

be: 

𝐻({“A”, “B”, ”C”, ”D”, ”F”, ”T”, ”x”, ”y”, ”Community 1”, ”Community self”}, {(“𝐴”, ”𝐵”), (”𝐵”, ”𝐶”),  

("𝐶", "𝐷"), ("𝐹", "𝑥"), ("𝑥", " 𝑇"),("𝐴", "𝐹"), ("𝐷", "𝑇"), ("𝐹", "𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 1"), ("𝑇", "𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑦 1"), 

 ("𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 1, 𝑆𝑒𝑙𝑓")}).  In this example, nodes {"F", "T", "x", "𝑦"} and edges 

{("F", "x"), ("x", "T"), ("T", "y")} of G are included in the graph 𝐻 as “Community 1”. This 

community is then connected with the rest of the graph with edges ("𝐴", "𝐹"),("𝐷", "𝑇") and 

“Community Self”.  
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This concern relates to normative (large population) statistical approaches typically adopted 

in psychometric studies that make assumptions in order to examine consistencies among 

collections of individuals. Specifically, a growing number of researchers argue that this 



normative (nomothetic) approach is mathematically not sensitive enough when assessing 

processes of change within individual people.  They suggest that is difficult or impossible to 

use data collected from multiple subjects (inter-subject variability) to accurately model the 

variations with a single subject (intra-subject variability) in clinical behavioral science.  They 

suggest that this is because the conditions required to do this properly are very restrictive and 

difficult to meet. This ergodic error has been shown to exist, in that its assumptions can only 

be made if one ignores the very many individual differences between individuals (P. C. 

Molenaar, 2013).  It, therefore, becomes clear that precise inter-individual variation cannot be 

captured by current nomothetic approaches once psychological phenotypes are understood 

not to be ergodic in nature (P. C. Molenaar, 2008).   

The reliability for scales across people in the form of cross-sectional data has been 

shown to be unreliable when attempting to inform scales across time for one individual such 

as when using time series data (Fuller-Tyszkiewicz et al., 2017; Hu et al., 2016).  As such, 

inter-individual variation cannot accurately assess the contribution of given elements to 

phenotypic change. Because of these challenges, the current focus within recent 

developments within clinical psychology through PBT, has been to explore and conduct 

analysis at the individual, idiographic and idionomic level which are sufficiently capable at 

capturing such elements of inter-individual variation that lead to phenotypic change 

(Ciarrochi et al., 2022; Hayes & Hofmann, 2017, 2018; Hayes et al., 2021; Hofmann & 

Hayes, 2019). This highlights the need for more personalized individual-level assessment, 

particularly the case when modeling at the level of the relational frame, given this is based 

entirely on the very specific learning history and context of each individual.  

This ergodic problem also extends to current psychiatric assessment models, such as 

identified in the current DSM model (American Psychiatric Association & Association, 2013) 

that highlight the need for protocols for syndromes, which again use a normative approach to 



assume process-based change can occur at the individual level of intra-subject variability.  

This leads to problems of co-morbidity between categories of syndromes, which then leads to 

great difficulty in attempting to explain the clinical etiology and causal pathways between 

such syndromes. One study explored through a multi-level structural equation modeling the 

multi-path nature and problem of co-morbidity within these normative protocols for 

syndromes approaches (D. Edwards, 2022), and suggested more ideographically sensitive 

approaches. 
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These types of EMAs are particularly useful for studying changes in the individual over time 

(Dunton, 2017; Shiffman, Stone, & Hufford, 2008).  These have been used in stand-alone 

studies as well as to compliment Randomized Controlled Trials (RCT) as follow-up studies 

(Perski et al., 2019) to gain a more in-depth analysis of the individual difference influences. 

Using an EMA this way ideographically could lead to a set of RFT-type time series 

assessment questions such as: “To what degree do you find yourself entangled with your 

thoughts about future or past events?”, whereby this assesses present moment feelings about 

how entangled the individual feels with their thoughts. “To what degree are you able to 

connect to present moment sensations in the here and now, rather than getting stuck thinking 

about the future or the past in this moment?”, whereby this assesses the individuals' feelings 

about how able they feel that can connect to the present moment. “To what degree do you 

spend worrying about the future in this moment?”, whereby this assesses future thinking.  

“To what degree do you spend thinking and feeling regretful, resentful, or pain about 

something in the past in this moment?” whereby this assesses thinking about the past. These 

are just some examples of ways to assess deictic frames, given an idiographic approach as 

they are presented in a way that asks about though and feelings in the present moment. 



Machine learning approaches such as natural language processing (NLP) approaches could 

also screen more qualitative present moment descriptions, and then model specific relational 

frames identified within the text, such as expanding on recent work in relational framing AI 

(D. J. Edwards et al., 2022) with an NLP module.  

 

 

 

Supplementary 9  

Illustrating some simple python programming language code that use modules networkx and 
matplotlib to form a graph that uses an autoregressive VAR model. 
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These strange loops which are thought to arise as unique properties of cognition are 

suggested to have a cyclic structure that goes through several levels of a hierarchical system, 



where each level is linked to at least one other level through some types of relational 

connection. As an example of this, consider the following statement:  “I am a liar”. If this is 

expressed as a logical statement and found to be true, then I must have been stating a truth, 

and if I am stating truth, then I cannot be a liar – hence the self-referential paradox. In a 

similar way, if “I am a liar” was expressed as a logical statement and found to be false, then I 

must have been lying about being a liar, therefore I cannot be a liar as I said a statement of 

truth – again hence the self-referential paradox. This also leads to the other types of 

paradoxes in self-referential statements such as referencing the system itself as in the 

following paradox, called the Liar Paradox: “This statement is false”.  

In formal logical axioms of mathematics, this can at times be a problem. In the early 

20 century, mathematicians were seeking a solid foundation for mathematics, mathematical 

facts or axioms that were both consistent and without contradiction to serve as the building 

blocks for all mathematical truths.  Gödel (Gödel, 1931) used a modified version of this liar 

paradox example, to show that certain self-referential statements led to mathematical proofs 

of truth but were clearly false, and hence they were incomplete. Gödel modified the ‘liar 

paradox’ by stating instead “this sentence is unprovable”, and called the Gödel sentence G.  

Gödel showed this paradoxical incompetence in self-referential logical systems 

formally in the following way: In a formal system F, and for every number 𝑛 and every 

formula 𝐹(𝑦) where 𝑦 is a free variable, 𝑞(𝑛, 𝐺(𝐹)), this can be defined as a relation 𝑞 

between two numbers 𝑛, whereby 𝑞 takes the argument of a Gödel number for a formula (an 

arbitrary ascribed number for a formula) 𝐺(𝐹), and 𝑞(𝑛, 𝐺(𝐹)).  These correspond to the 

statement “𝑛 is not the Gödel number of a proof of 𝐹(𝐺(𝐹))”. Taking this one step further, 

any proof of 𝐹(𝐺(𝐹)) can be encoded by a Gödel number 𝑛 such that 𝑞(𝑛, 𝐺(𝐹)) does not 

hold true. If 𝑞(𝑛, 𝐺(𝐹)) holds true for all natural numbers of 𝑛 then there is no proof of 

𝐹(𝐺(𝐹)). Therefore,  for all instances of 𝑦, 𝑦 𝑞(𝑦, 𝐺(𝐹)) is a formula about natural 



numbers that correspond to “there is no proof of 𝐹(𝐺(𝐹)).”  If a formula is then defined 

𝑃(𝑥) = 𝑦 𝑞(𝑦, 𝑥) where 𝑥 is a free variable, the formula 𝑃 has an ascribed Gödel number 

𝐺(𝑃) as with all formulas in this exercise.  If the free variable 𝑥 is then replaced with 𝐺(𝐹) 

then 𝑃(𝐺)𝐹)) = 𝑦 𝑞(𝑦, 𝐺(𝐹)) also corresponds to “there is no proof of 𝐹(𝐺(𝐹))”. Now 

consider the formula 𝑃(𝐺)𝑃)) = 𝑦 𝑞(𝑦,𝐺(𝑃)) where formula 𝐹 has been ascribed a Gödel 

value 𝑃, which corresponds to “there is no proof of 𝑃(𝐺)𝑃))”.  This brings the same 

paradoxical self-referential problem to formal axioms in logic as the simple Liar paradox i.e., 

it is a formula of the theory that relates to its own probability within the formal theory. As 

such, because of this self-reference, the formula 𝑃(𝐺)𝑃)) nor its negation ¬𝑃(𝐺)𝑃)) is 

provable. If 𝑃(𝐺)𝑃)) = 𝑦 𝑞(𝑦, 𝐺(𝑃)) were provable and let 𝑛 be the Gödel number of a 

proof 𝑃(𝐺)𝑃)), then the formula ¬𝑞(𝑛,𝐺(𝑃)) (the negation of the non-provable statement) 

is provable.  However, proving both 𝑦 𝑞(𝑦, 𝐺(𝑃)) and ¬𝑞(𝑛, 𝐺(𝑃)) violates the 

consistency of the formal theory because of this self-reference, and hence it is concluded that 

𝑃(𝐺)𝑃)) is not provable, and it is therefore concluded to be formally paradoxical, 

contradictory, and incomplete.  

Hofstadter (Hofstadter, 1979, 2007) argues that a similar paradox occurs in the 

development of the psychological ‘self’ pointing to Gödel and the Liar paradox as evidence 

for this (as well as many other examples).  He refers to humans' ability to use self-symbols 

and higher hierarchical levels of cognitive symbols that allow for deeper semantic meaning in 

understanding the paradoxical nature of Gödel’s self-referential unprovable statements and 

other strange loops. Importantly, Hofstadter suggests that self-symbols arise as the individual 

interacts with their surroundings, such as perspective-taking about themselves (described in 

RFT as an I-NOW-HERE relation) and reflecting from other people’s point of view 

(described in RFT as a YOU-NOW-THERE relation). The symbols which capture patterns 

from the environment are suggested to have emerged from Darwinian evolution in the form 



of cognitive abilities such as categorization (including self-categorization or these could be 

deictic framing as described by RFT) that promote survival at a macro-level reality.  

The self-symbols are suggested to grow with constant feedback loops, as the 

interaction with the environment increases over time. Hofstadter (Hofstadter, 1979, 2007) 

suggests that the level of hierarchical sophistication within the symbolic networks projects 

the level of reality that it attempts to mirror within the patterns given from within the 

environment.  Therefore, the self-symbols project a reality about oneself based on the 

patterns from the environment it learns from (via reinforcement learning) within its 

hierarchical feedback loop. This is highly consistent with the RFT model which also suggests 

that complex networks are created via reinforcement and relational framing of hierarchy 

given patterns of contextual cues from the environment (Barnes-Holmes, Hayes, & Roche, 

2001; Blackledge, 2003; Zettle, Hayes, Barnes-Holmes, & Biglan, 2016). 

This could mean that self-symbols that project a negative reality about oneself may 

significantly and causally affect the behavior and thoughts of that individual in a negative 

way (possibly bring about depression, and perhaps destructive behaviors) consistent with the 

self-symbols. However, such self-referential thoughts or statements may be paradoxical, 

based on projected evaluation and not statements of truth.  This is because the self-referential 

symbols about oneself are in a “strange” hierarchical feedback arrangement loop that has 

causal influence over the individual’s agency and how they perceive and categorize the 

reality about themselves. This could be similar to the negative feedback loops described in 

PBT assessment work (Hofmann, Hayes, & Lorscheid, 2021). From this perspective, 

destructive self-referential propositions about oneself can be made (confirmation biases) such 

as “I am a loser”, “no one likes me”, “what is the point in trying, I will only fail”, maybe 

incorrectly assumed to be true by the individual despite much counterfactual evidence which 

individual ignores. In ACT and RFT (Hayes, Strosahl, Bunting, Twohig, & Wilson, 2004; 



Hayes, Strosahl, & Wilson, 1999, 2011), this type of self, is described as ‘self-as-content’, as 

is the self that is driven and entangled in these arbitrary self-symbols.  This type of self may 

exist within the logical system of formal logical self-referential and paradoxical statements 

that describes it. This is distinct from an observer self (or self-as-context) which in ACT and 

RFT is described as the self that is not entangled by the self-referential system that describes 

it. It is this observer self or self as context that needs to be mathematically described outside 

and entirely unbounded from the formal logical system.  

As a formal logical axioms account of the problem of self-reference strange loops, 

consider the following propositional statement: (1) “Bill is my enemy”; (2) “Bill is also his 

own worst enemy”; (3) “The enemy of my enemy is my friend”; (4) as Bill is the enemy of 

my enemy, he must be my friend.”  This is clearly paradoxical in nature, but it can be proved 

within formal logic to be true. For example: 

Let 𝐸(𝑥, 𝑦) represent the statement “𝑥 is an enemy of 𝑦”, and 𝐹𝑊(𝑥) be the 

statement “𝑥 is his own worst enemy”, and 𝐹(𝑥, 𝑦) be the stamen “𝑥 is a friend of 𝑦”. The 

argument expressed in propositional statements one to four can be expressed as a theorem 

within a formal mathematical system, using the following mathematical notation:  

Theorem: 𝑥, 𝑦, 𝑧(𝐸(𝑥, 𝑦)⋀𝐸(𝑦, 𝑧) → 𝐹(𝑥,𝑧)), which states that for any individual 

𝑥, 𝑦 and 𝑧 if 𝑥 is an enemy of 𝑦 and 𝑦 is an enemy of 𝑧 (this expresses that Bill 𝑥 is his own 

worst enemy 𝑧), then 𝑥 must be a friend of 𝑧 (who is Bill expressed as an enemy of himself).  

To show that this theorem is true, a proof by contradiction can be provided in 11 

steps, such as: 

1. Assume that 𝑥, 𝑦, 𝑧(𝐸(𝑥, 𝑦)⋀𝐸(𝑦, 𝑧) → 𝐹(𝑥, 𝑧)) is false.  

2. Then there exists 𝑥, 𝑦, 𝑧 such that 𝐸(𝑥, 𝑦)⋀𝐸(𝑦, 𝑧) and ¬𝐹(𝑥, 𝑧)) . 

3. From step 2, we know that 𝑥 is an enemy of 𝑦, and 𝑦 is the enemy of 𝑧. 

4. From step 3, we know that 𝑥 is not a friend of 𝑧. 



5. From step 4, we know that 𝑥 and 𝑧 are not friends, and since they are not friends, 

they must be enemies.  

6. From step 5, we know that 𝑥 is an enemy of 𝑧. 

7. From step 6, we know that 𝐸(𝑥, 𝑦). 

8. From steps 3 and 7, we know that 𝑦 is an enemy of 𝑥 and 𝑦 is an enemy of 𝑧. 

9. From step 8, we have 𝐸(𝑥, 𝑦)⋀𝐸(𝑦,𝑧). 

10. From steps 9 and 1, we have 𝐹(𝑥, 𝑧) which contradicts 2.  

11. Therefore, the assumption made in step 1 must be false, and thus 

𝑥, 𝑦, 𝑧(𝐸(𝑥,𝑦)⋀𝐸(𝑦,𝑧) → 𝐹(𝑥,𝑧)) is proved true.  

This proof shows that the theorem 𝑥, 𝑦, 𝑧(𝐸(𝑥,𝑦)⋀𝐸(𝑦,𝑧) → 𝐹(𝑥,𝑧)) (Bill is both 

your friend and your enemy)  holds true within a formal mathematical logical system, and it’s 

a valid and provable mathematical statement despite it being paradoxical and an example of a 

strange self-referential strange loop expressed within formal logical mathematics.  

 For this reason, some aspects of self-such as the observer self (the conscious aspect of 

self that observes the individual’s experience) needs to be described mathematically outside 

of the formal system that attempts to describe it at least partially prevent such self -referential 

strange loops. One potential way to explain this observer self outside of logical systems is to 

use a different mathematical framework, such as a Markov Kernel. A Markov kernel is a 

mathematical framework used in the field of machine learning and optimal control theory to 

model the probability of transitions between different dynamic states within the system. This 

may be one way to better understand and model this complex construct of the conscious 

observer self.  
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In accordance with information theory, the representational contents of conscious experience 

𝑋 and conscious action 𝐺 are assumed to be encoded in bits of information. 𝑋 and 𝐺 are also 

assumed to encode the same number of bits (the same resolution) to the inputs and outputs of 

world state 𝑊. Decisions 𝐷 can be assumed to operate in discrete steps, as previous instances 

of 𝐺, 𝐷 maps a fully encoded element of 𝑋 to a fully encoded element of  𝐺.  The smallest 

amount of information of either 𝑋 or 𝐺 is one bit, and therefore the smallest amount of 

information of an action of 𝐷 is a one-bit to one-bit mapping.  

The CA thesis suggests that a conscious process, such as conscious recognition (e.g., 

contextual functional cue), inference (e.g., derived relation), or choice should be 

representable through the action of a Markov kernel. It suggests that any formal 

representation of conscious experience must be represented through the interaction of the 

kernels 𝑃 − 𝐷 − 𝐴 cycle given some formal properties (Koenderink, 2014). As such, the 

observer self is described as a process of conscious experiences that consciously observes 

experience transmitted through the evolutionary defined interface (based on fitness).  As 

previously justified through the ‘fitness beats truth’ theorems, that the objects and casual 

relations within conscious experience 𝑋 should not be assumed to be homomorphic to the 

elements and relations within the extrinsic world state 𝑊. This is important when using a 

functional contextual approach, as functional continual cues are complex, can change through 

relational framing (e.g., such as through a transformation of stimulus function), and are often 

hidden from the conscious perceiver.  

Cognition and relational frames of RFT, including basic reinforcing properties can be 

applied at the interface level and represented through the interaction of the kernels 𝑃 − 𝐷 − 𝐴 

cycle of the CA. This is done through the interplay of intrinsic and extrinsic perspectives of 

CA (the observer self). Extrinsic and intrinsic perspectives of CA can contrast, such that the 

extrinsic perspective relates to the theorists' perspective of elements 𝑊, 𝐴, and 𝑃, whilst the 



intrinsic perspective of the CA is the conscious experience itself, i.e., the CA is an observer 

(the conscious observer perceptive – i.e., the observer self). The intrinsic CA 

phenomenological perspective can be formulated through the concept of a “reduced CA” 

(RCA), which is a 4-tuple  [(𝑋, X), (G, G), D, t]. It is this RCA combined with extrinsic 

perspective elements 𝑊, 𝐴, and 𝑃, that makeup CA. The RCA is free to choose which 

conscious actions 𝐺 they would like to take in response to some conscious experience 𝑥 𝜖 𝑋 

when embedded and interacting with 𝑊, and represented by kernel 𝐷.  The RCA’s 𝐴 on 𝑊 is 

in part determined by the structure of 𝑊, and likewise, the 𝑃 is in part determined by the 

structure of the RCA (i.e., the structure of the observer self).    

From this, it can be assumed through ITP that the RCA’s knowledge of 𝑊 is formed 

entirely through conscious experience 𝑋.  The RCA’s entire conscious experience of 𝑊 at 

time t can be given by the elements of 𝑋 that are selected by 𝑃 at any given time t.  Through 

these assumptions, it is clear that ITP does not allow the RCA any independent access to the 

ontology of 𝑊, and therefore must be assumed to be a-ontological, and this is consistent with 

the a-ontological position of functional contextualism.  As such, the RCA cannot access their 

own or others’ 𝑃, 𝐷, and 𝐴 kernel definitions, so have no way of knowing whether they are 

homomorphisms of the real world. An RCA only knows what appears in their experience of 

𝑋 and has no other knowledge about the real world for itself or other RCAs (including other 

RCAs 𝑋 and 𝐺). If any structure is attributed to 𝑊, then this can only be hypothetical, and 

made from inferences (e.g., derived relations) of knowledge about the world experienced 

from 𝑋.  
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Interoceptive signals, that signal to the brain from the body to form embodied cognition 

originate from afferent neurons which signal to the brain interoceptive signals from the body 

via small-diameter unmyelinated C and myelinated Aδ primary afferent fibers.  These fibers 

innervate all bodily tissue and terminate monosynaptically in lamina I and II neurons of the 

spinal and trigeminal dorsal horns (Craig, 2002; Panneton, 1991), and their outputted 

electrical signals then travel through the posterior grey column of the spinal cord to 

hypothalamus, anterior insular and cingulate cortices (Pollatos, Gramann, & Schandry, 2007).  

The signals enter an integration phase, whereby they are then organized into primary 

emotional and motivational centers of the limbic system, the anterior insula cortex (AIC), and 

cingulate cortices of the homeostatic sensorimotor cortex.  This integrative system is 

activated during all emotional and motivational behavior (Craig, 2014; Murphy, Nimmo-

Smith, & Lawrence, 2003), so have an important role to play in terms of behavioral, 

regulatory, and even ER (Pinna & Edwards, 2020). At this stage, it has been proposed that 

these centers then develop and define a meta-representation of the self which allows for 

finely-tuned regulatory responses to be formulated (Damasio & Carvalho, 2013). 

Damasio (Damasio, 2003; Damasio & Carvalho, 2013) who developed the somatic 

marker hypothesis of consciousness (which is the assumption that self-aware consciousness 

emerges from an image of the homeostatic state of the body), suggested that the interoceptive 

pathway of the right insular maybe involved with neuro basis of the conscious representation 

of the self. This assumption, along with suggestions made by Critchely et al. (Critchley, 

2003) who through reviewing the imaging literature of emotion, suggested that subjective 

emotion and the role of interoception and the anterior insular still needed further modeling 

efforts to incorporate these, are interesting.  They perhaps fit well with the suggestions made 

by LeDoux and colleague, where perhaps the meta-representation of self as produced by the 

interoceptive system of the insular cortex, maybe some form from a pre-representation before 



a more complete conscious representation of ‘self’ emerges which involve higher levels of 

cognition within emotional processing in the frontal neocortex. (LeDoux, 2000, 2020; 

LeDoux & Brown, 2017). LeDoux’s suggestion that conscious perceptual and emotional 

states depend on antecedent non-conscious states which include schemas, memories, and 

mental models (meta-cognition) may therefore include the interoceptive states as described 

by Damasio.  Complex, hierarchical relational frames that relate deictics of self and other, 

may be involved in this frontal cortical area. This could be related to the hierarchical patterns 

of mind that were supposed to be important for self-referential thought as suggested by 

Hofstadter (Hofstadter, 1979, 2007). 

The neurovisceral integration model (NIM) (Thayer & Friedman, 2002, 2004; Thayer 

& Lane, 2000)  suggests that the anatomical network of the forebrain, brainstem, spinal cord 

and the central autonomic network (CAN) are delineated, and the integration of sensory-

visceral, emotional, and cognitive information, as well as the regulatory actions as a result of  

this, is explained (Benarroch, 1993).  Integrative processes involved such as the parabrachial 

nucleus, the nucleus solitarius, and medullary reticular formation of the brain stem (Thayer & 

Lane, 2000) for reflex control within the vagal nerve pathway, which project to areas such as 

the hypothalamus, and which should be noted. Central to the way in which emotional 

regulation, interoception, and heart rate variability are connected, seem to largely be via a 

feedback loop of brain circuitry which includes the limbic system; such as the amygdala (for 

fear processing), hypothalamus (integrating endocrine inputs), hippocampus (for Pavlovian 

associative memories), and thalamus (as a regulatory relay); the basal ganglia (for operant 

conditioning of rewards); the insular cortex (for interoceptive, as well as vagal properties and 

meta representation of self), along with the anterior cingulate cortex (ACC); and the 

prefrontal cortex (for higher-order cognition, emotional experience, and representation of 

self).  



Evidence for the looping effects of this axis is given in several clinical studies which 

complement the many non-clinical studies already mentioned such as the NIM (Thayer & 

Friedman, 2002, 2004; Thayer & Lane, 2000), Polyvagal theory (Porges, 2003, 2007, 2018), 

interoceptive pathway (Craig, 2002, 2003; Strigo & Craig, 2016) but also other evidence such 

as the basal ganglia being involved in the reward system of operant reinforcement, through a 

thalamus-hippocampus connection (Aggleton et al., 2010); hippocampus-amygdala (Phillips 

& LeDoux, 1992; Sutherland & McDonald, 1990); hippocampus-amygdala-prefrontal cortex 

(McEwen, Nasca, & Gray, 2016); and hypothalamus-amygdala-prefrontal cortex (Buijs & 

Van Eden, 2000; Lundy Jr & Norgren, 2004). 

From the clinical evidence, such connectivity has been identified within studies that 

relate to post-traumatic stress disorder (PTSD), which is characterized by altered and 

negative emotional responses as well as associated behavioral problems such as poor sleep, 

restlessness, hypervigilance, anhedonia, and social withdrawal.  Amygdala-insula 

connectivity and activity have been found to be largely responsible for these altered 

emotional and behavioral states (Rabinak et al., 2011).  In addition to this, there is clear 

evidence that suggests that the anterior cingulate cortex (ACC) connects and relays 

information to both the limbic system and the prefrontal cortex (Stevens, Hurley, & Taber, 

2011).  There is also evidence of bilateral insula-ACC connectivity (White, Joseph, Francis, 

& Liddle, 2010), where it was found that there was heightened amygdala responsivity in 

PTSD suffers when the individuals were stressed (i.e., symptomatic states) and exposed to 

trauma-related and affective situations. Crucially, it was found that prefrontal cortex 

responsivity was inversely associated with stress symptom severity, i.e., higher activation of 

the prefrontal cortex led to lower activity of the amygdala and associated stressful symptoms 

(Shin, Rauch, & Pitman, 2006). This may suggest that the prefrontal cortex has some 

inhibitory control over some aspects of the limbic system such as the amygdala.  
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Embodied cognition and self, have emerged in the cognitive science literature (Hohwy, 

2020), and conceptualize the brain as a predictive machine (the Bayesian Brain hypothesis), 

which includes the idea of predictive coding, the free energy principle, and active inference  

(Ramstead, Kirchhoff, & Friston, 2020).  The free energy principle (FEP) is widely 

considered a unifying theory that aims to explain the brain and the dynamics of all living 

organisms (Kirchhoff, 2018). The theory suggests that living, adaptive, self-organizing 

systems avoid disorder through dispersion by random fluctuations and attempt to remain in 

thermodynamic non-equilibrium steady-states by restricting themselves to a limited number 

of states through the minimization of free energy (prediction error) (Friston, 2009, 2019; 

Hipolito, 2019; Limanowski & Friston, 2020). A simpler definition of free energy can be 

stated as the difference between the system's predicted state and their actual state, whereby 

this difference is termed the prediction error, so that minimizing prediction error is 

functionally the same as minimizing free energy (Bohlen, Shaw, Cerritelli, & Esteves, 2021).  

Minimizing free energy can also be understood and explained through the avoidance of  

surprise and to minimize entropy (uncertainty) within the system (Friston, 2010).  

Predictive coding deals with the management of entropy, and some of these ideas 

emerged decades ago, when the physicist Edwin Schrödinger (Schrödinger, 1942) in his 

seminal book, What Is Life?, argued that living adaptive systems survive by reducing their 

internal entropy, whilst increasing the entropy in their external environment.  Schrodinger 

(Schrödinger, 1944) observed that living systems were unique among natural systems as they 

had the ability to self-organize over time, and therefore resisted the second law of 

thermodynamics which states that the entropy of an isolated system left to spontaneous 



evolution cannot decrease – i.e., entropy must increase over time in these systems. This 

inspired a new center of inquiry called evolutionary systems theory (EST) which is related to 

complexity theory, and which explains dynamic, evolving systems, and the reciprocal relation 

between general evolutionary selection and self-organizing behavior (Badcock, 2012; Depew 

& Weber, 1996; Kauffman, 1993). This relates to the EEMM, in that behavioral selection and 

retention at the different dimensions and levels may be at a higher level of dynamical system 

analysis, maybe a form of entropy-reducing system.  

Entropy is a concept derived from thermodynamics and information theory describing 

the amount of disorder or uncertainty within a system (Hirsh, Mar, & Peterson, 2012).  

In accordance with the second law of thermodynamics, the total level of entropy within the 

universe will always increase, however, living (self-organizing) systems can reduce the 

entropy found within their biological systems through the consumption of energy from the 

external environment, and use it to maintain order within their system, and by displacing 

entropy in the environment. This works in line with dynamical systems theory, whereby the 

entropy-reduction framework has been extended to account for biological organisms as 

dissipative systems (Prigogine & Stengers, 1997). This account suggests that an organism 

must dissipate its entropy into the external environment in order to survive. In situations 

whereby the environment changes and produces more entropy for the organism within that 

environment, this challenges the structural (self-organization) coherence of the organism, and 

the organism must then adjust its pattern of self-organization to reduce the internal entropy 

and dissipate this within the environment. So, in dynamical systems theory, this refers to a 

biological organism as an information system, that must self-organize appropriately in order 

to manage its internal entropy in order to survive (Kauffman, 1993). Those who do not, are 

destroyed, and in evolutionary theory, this implies that the organism becomes extinct. In 

responding to increased external entropy, complex systems tend to return to a number of 



smaller, stable entropy states called attractors (Grassberger & Procaccia, 1983), as the more 

complex systems cannot provide stable entropy management.  

 In addition to the study of an adaptive system’s structural organization, the 

frameworks of entropy and self-organizing adaptive systems have been applied to the study 

of psychological phenomena (Barton, 1994; Carver & Scheier, 2002; Hollis, Kloos, & Van 

Orden, 2009; Vallacher, Read, & Nowak, 2002).  This is because psychological phenomena 

can be regarded as a set of complex systems, and the information theory frameworks of 

entropy and self-organization can therefore be useful here.  Examples of these include 

observations of self-organizing dynamics in cognitive processes of problem-solving (Stephen, 

Boncoddo, Magnuson, & Dixon, 2009; Stephen, Dixon, & Isenhower, 2009).  In these 

studies, the researchers made two main observations: (1) that an increase in entropy of 

problem-solving behavior occurs when the initial strategy to solve a problem becomes 

ineffective. This increase in entropy was quantifiably measured by the increasing irregularity 

and unpredictability of the participant’s responding to the problem as they attempted  to solve 

it. (2) The increase in behavioral entropy preceded the subsequent changes in behavior to 

solve the problem, whereby more predictable, stable, and low entropy behavioral patterns 

were preferred and selected. This suggests that the cognitive-behavioral system seems to 

obey the same principled laws of internal entropy minimization as other dissipative self -

organizing systems. So, from an evolutionary perspective, the system will select self -

organizing behavior which minimizes internal entropy when it is confronted with 

environmental challenges of high entropy, in order to adapt, or the system will be 

overwhelmed, deteriorate, and fail to adapt, thus ultimately leading to its own extinction.  

 Similar entropy interpretive frameworks have been applied  to neural activity which 

underly cognitive phenomena. As such, several quantitative entropy measures have been 

developed for the neural substrate (Borst & Theunissen, 1999; Nemenman, Bialek, & Van 



Steveninck, 2004; Paninski, 2003; Pereda, Quiroga, & Bhattacharya, 2005; Strong, Koberle, 

Van Steveninck, & Bialek, 1998; Tononi, Sporns, & Edelman, 1994).  Perhaps the most 

prominent of these theories is that provided by Friston and colleagues (Friston, 2010, 2013; 

Friston, Kilner, & Harrison, 2006; Friston, Parr, & de Vries, 2017) whereby they suggest that 

the brain tries to reduce internal neuronal entropy in order to support cognitive and behavioral 

adaptation, and by generating more adaptive (predictive) representations of the environment. 

Here, the brain, within a dissipative systems context, adjusts its structural organization 

(reducing entropy in the form of predictive error) as it acts as a self-organizing system, and 

adjusts to the changes in reinforcing contingencies and entropy within the environment 

(Friston, 2010; Kelso, 1995).   

 Evolution, biology, cognitive, and behavioral influences can be explored through an 

adaptive framework that fits well with EEMM. The role of entropy within a thermodynamical 

perspective or self-organizing, adaptive agents is to explain a wide range of cognitive, 

behavioral, and evolutionary phenomena. From a psychological perspective, when confronted 

with some environmental situation, the organism (here, an individual) is presented with an 

array of perceptual and behavioral affordances which reflect the combination of incoming 

sensory information from the environment with the organism’s probability for responding 

cognitively and behaviorally (Cisek, 2007; Cisek & Kalaska, 2010; Gibson, 2014; Warren, 

2006; Zhang & Patel, 2006). So, these affordances are assumed to direct the possible 

behavioral responses which can be implemented given some environmental context (Gibson, 

2014). Perceptions relate to the interpretation of sensory information in accordance with 

expectations (predictions), motives (goals and values), and past experience (prior 

reinforcement and memories). An interesting entropy model of uncertainty (EMU) (Hirsh et 

al., 2012) conceptualizes perceptual and behavioral affordances as probability distributions.  

Within this EMU model (Hirsh et al., 2012), Shannon’s entropy (Shannon, 1948) formula is 



utilized to calculate the entropy associated with a given perceptual or behavioral experience.   

This can be given by the negative sum of the log probabilities of each possible perceptual or 

behavioral outcome, and is denoted as: 

 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖)
𝑛
𝑖=1 𝑙𝑜𝑔2𝑝(𝑥𝑖)                                                                                     

 

Where entropy 𝐻 of variable 𝑋 (in this case the perceptual or behavioral outcome), whereby 

possible outcomes  𝑥1,… , 𝑥𝑛, which have the probability of occurrence  𝑝(𝑥1),… , 𝑝(𝑥𝑛) 

within some probability distribution, and represented as a function of weighted neural inputs 

for a possibility of a perceptual or behavioral event (e.g., 𝑥1), in that moment, and given a 

specific environmental context. Here, the formula indicates probability distributions whereby 

one or more perceptual or behavioral outcomes are more likely to result than others and 

should reflect lower entropy levels, i.e., more certainty and predictability about the outcome 

of a particular perception or behavior given some environmental stimuli (or reinforcing 

contingencies). In contrast to this, Shannon’s entropy equation suggests that probability 

distributions that are flatter, in which no perceptual or behavioral outcome is likely favored 

(in selection), then this should result in higher entropy, i.e., less certainty about an outcome, 

given some environmental context.  Here, behaviors embedded in goals and values can be 

shown to reduce overall entropy over the longer term, so this seems ACT consistent.  
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The Helmholtz decomposition is particularly useful for exploring the stability and 

convergence in coupled dynamical systems. Here, it suggests that any sufficiently smooth 

vector field 𝐅 which outputs continuous derivatives, can be decomposed into irrational (curl-

free) and solenoidal (divergence-free) vector field. As the irrational vector field has only 

scalar potential, and the solenoidal vector field has only a vector potential, a vector field can 



therefore be expressed as follows here ▽ Ф and ▽ × 𝐀 is the irrational and solenoidal vector 

fields respectively: 

 

𝐅 = − ▽ Ф ▽ × A                                                                                                

 Within dynamical systems theory, Lyapunov functions have been used extensively to 

model the stability of fixed points of dynamical systems (Liapunov, 2016; Lyapunov, 1992).  

They are generally defined for smooth systems in conditions: 

 

(a) 𝐿(𝑥 ∗) = 0,  and 𝐿(𝑥) > 0 if 𝑥 ≠ 𝑥 ∗                                                     

(b) 𝐿̇(𝑥) =
𝑑𝐿

𝑑𝑡
|𝑥  0, for all 𝑥 𝜖 𝑂,                                                                

 

Where 𝑂  ℝ  is an open set containing all states of 𝑥, where  representants a subset. So, to 

summarize, in any nonequilibrium steady state dynamical system, the flow can be expressed 

as a scalar potential or Lyapunov function 𝜓(𝑥) = 𝐿(𝑥) where the flow can always be 

decomposed into a gradient flow, and this minimizes the potential and a solenoidal 

component that flows on the iso-contours of the potential.  

Finally, a mathematical term must express the association of the potential or 

Lyapunov function with variational free energy. Variational free energy is a function of 

internal states, that allows for the characterization of system dynamics in terms of Bayesian 

inference and implicit generative models. It unpacks the non-equilibrium steady-state flow of 

internal, external, and blanket states. Under this partition, internal and active states minimize 

variational free energy (instead of the thermodynamic potential or Lyapunov function).  

Variational free energy is defined in terms of a generative model and implicit posterior 

beliefs encoded within internal states. So, the minimization of variational free energy gives 

an interpretation of self-organization in terms of belief updating (the generative model 



updates) according to the Bayes rule. This allows for the specification of the resulting non-

equilibrium steady state in terms of a generative model.  

The next step is to define the dynamics within a setting of generalized coordinates of 

motion and density dynamics as described by the Fokker-Plank equation.  For generalized 

flow, this description of dynamics in generalized coordinates of motion is denoted with a 

tilde, where 𝑥̃ is defined as: 

 

𝑥̃ = (𝑥, 𝑥̇, 𝑥,̈ … )                                                                                                    

 

This augments a state with its velocity, acceleration, etc. Generalized coordinates of motion 

will eventually be used to parameterize a posterior density over the general motion of 

external states which are hidden behind the Markov blanket. These general coordinates allow 

for the accommodation of temporal correlations in random fluctuations. When assuming a 

smooth dynamical system, subject to random fluctuations, the motion of states can be 

described by the Langevin equation, and denoted as: 

 

𝑥̇̃ = 𝑓(𝑥̃) + 𝜔            

 

Where 𝑓(𝑥̃) is the generalized flow or time evolution of states parameterized by the forces 

acting on the states, and 𝜔 are the random fluctuations under the Wiener assumptions – i.e., 

the flow of states follows a process of independent, Gaussian increments that follow a 

continuous path. The evolution of the probability density 𝑝(𝑥̃) through the Fokker-Plank 

equation can be obtained by the Langevin equation, using the conversion of probability mass:  

 

𝑝̇(𝑥̃) =▽· [𝑥̇̃𝑝(𝑥̃)] = 0        



 

Where 𝑥̇̃𝑝(𝑥̃) describes the probability current, and turns the Fokker-Plank equation into a 

continuity equation, which can be denoted as: 

 

𝑝̇(𝑥̃) =▽· Г ▽ 𝑝 −▽· (𝑓(𝑥)𝑝)        

 

A partial differential equation that describes the time evolution of the probability density 

𝑝(𝑥̃) under dissipative and conservative forces. The density dynamics, at a non-equilibrium 

steady state, is the solution to the Fokker-Plank equation, and is denoted as: 

 

𝐿(𝑥̃) = − 𝑙𝑛 𝑝( 𝑥̃)             

 

Such that ▽ 𝑝 = −𝑝 ▽ 𝐿 and 𝑝̇ = 0.  Then, utilizing the Helmholtz decomposition the 

steady-state flow can now be expressed in terms of a divergent-free component and a curl-

free decent on a scalar Lyapunov function 𝐿(𝑥̃), to obtain the following: 

 

𝑓̇(𝑥̃) = (𝑄 − Г) ▽ 𝐿(𝑥̃)                      

 

This is the solution at the non-equilibrium steady-state, and it is now possible to see that the 

Lyapunov function 𝐿(𝑥̃) is the negative log probability of finding the system in any 

generalized state 𝐿(𝑥̃) = − ln 𝑝( 𝑥̃).  This is also known as the self-information or surprise 

(surprisal) in information theory, and in Bayesian statistics, it is known as negative log 

evidence.  

 In addition to surprisal, goal-directed behavior (anchored in values) of the system 

needs to be defined mathematically. Here, the principle of least action, from physics is 



relevant to describe how a self-organizing system works toward an invariant outcome despite 

various environmental changes, in the form of goal-directed behavior (or action). From this 

principle of least action, paths of behavioral least action can be predicted, whereby a path 

could be considered a flow channel for finding the least average action in situations of goal-

directed behavior (e.g., gathering food).   

Open dynamical systems prefer states of least action or in other words, the most 

efficient state. These dissipative random dynamical systems (Arnold, 1995; Crauel & 

Flandoli, 1994) do not minimize action for each element of the system but instead do so on 

average over an ensemble of elements (G. Georgiev & Georgiev, 2002; G. Y. Georgiev & 

Chatterjee, 2016; G. Y. Georgiev, Chatterjee, & Iannacchione, 2017; G. Y. Georgiev et al., 

2015).  As self-organizing systems are not conservative, they are inherently dissipative. As 

such, action is reduced by obstructive-constraint minimization for each event within the 

system and self-organized, which forms a flow structure and could be understood as a 

dissipative structure  (England, 2015; Evans & Searles, 2002; Prigogine, 1978). Though the 

Lyapunov function of a physical system is utilized to establish the stability of a fixed point in 

a dynamic system, physicists commonly use the Lagrangian to solve the trajectory of a 

system's states.  For a conservative system, the Lagrangian can be denoted as: 

 

𝐿 = 𝑇 − 𝑉,                                                                                                                  

 

Where 𝐿 denotes the Lagrangian, 𝑉 is the potential energy of a system and defined by the 

constraints of the system, 𝑇 is the kinetic energy of the particles which constitute the system 

such as the neurons.   The trajectory of states in generalized coordinates (𝑡, 𝑥̃(𝑡), 𝑥̇̃(𝑡))  are 

given via the Euler-Lagrange question, which is bound by the principle of least action to be 

functions, and in the following is stationary (has extrema): 



 

   𝑆(𝑥̃) = ∫ 𝐿(𝑡,
𝑡2

𝑡1
𝑥̃ (𝑡), 𝑥̇̃ (𝑡))d𝑡.                                                                            

 

𝑆 integrates the Lagrangian of general states for boundary conditions defined for initial and  

final time points 𝑡1 and 𝑡2. The most likely path between two points can be obtained when the 

functional derivative is zero, i.e., 𝛿𝑆 = 0, which is the Hamilton’s principle. The equations of 

motion are then derived from the Euler-Lagrange equations, which give the solution to the 

principle of least action, and are denoted as: 

 

   
d𝑡

d𝑡
 

𝜕𝐿

𝜕𝑥̇
−

𝜕𝐿

𝜕𝑥𝑖̃
= 0 for 𝑖 = 1.2, … , 𝑛         

 

Where 𝑥̃𝑖 are the generalized coordinates and 𝑥̇̃𝑖 the generalized velocities. The equation has 

additional dissipate terms for dissipative systems. The dissipative function depends on the 

square of the velocity, denoted as: 

 

𝐹 =
1

2
 𝑘𝑥̇̃ 2               

 

Which converts the Euler-Lagrange equation into: 

 

d𝑡

d𝑡
 (

𝜕𝐿

𝜕𝑥̇𝑖
) −

𝜕𝐿

𝜕 𝑥𝑖
+

𝜕𝐹

𝜕𝑥̇𝑖
= 0         

 

Here, the constraints to the motion of the agents in the system can be given by the Lagrangian 

multipliers: 

 



𝛿 ∫ [𝐿(𝑡, 𝑥̃
𝑡2

𝑡1
(𝑡), 𝑥̇̃(𝑡)) + ∑ 𝜆𝑘(𝑡)𝑔𝑘𝑘 (𝑡, 𝑥̃(𝑡))]𝑑𝑡 = 0     

 

Where 𝜆𝑘 are the Lagrangian multipliers, and 𝑔𝑘  are the constraints (Arfken & Weber, 1999). 

The solutions for this are the constrained Lagrangian equations of motion., denoted as:  

 

d𝑡

d𝑡
(

𝜕𝐿

𝜕𝑥̇𝑖
) −

𝜕𝐿

𝜕𝑥𝑖
+

𝜕𝐹

𝜕𝑥̇𝑖
= ∑ 𝜆𝑘

𝜕𝐿

𝜕𝑥𝑖
𝑘         

 

Random noise can also be included in the equation, which is important for biological systems 

such as neuron functioning (El Kaabouchi & Wang, 2015).  The functional 𝑆 is the action of 

the system as the Lagrangian describes trajectories of particles under force.  Therefore, the 

variational principle is applied to the action of a system and referred to as the least action 

principle. For larger biological systems, it is necessary to apply the action of an assemble of 

systems of particles when applying the least action principle.  

This is reflected in the solution 𝐿(𝑥̃) = − ln 𝑝( 𝑥̃) to the Fokker-Plank equation, which means 

the action is the path integral of the marginal likelihood or self-information for any system or 

model 𝑚: 

  

𝑆 = ∫ 𝐿(𝑥̃
𝑡2

𝑡1
(𝑡)) d𝑡 = ∫ ln 𝑝(𝑥̃|𝑚)d𝑡

𝑡2

𝑡1
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𝜇 ⏊ 𝜂|𝑏 ⇔ 𝑝(𝜇, 𝜂 |𝑏) = 𝑝(𝜇|𝑏)𝑝(𝜂|𝑏)                                                                        

 

This emphasizes a dynamical setting (Friston, Da Costa, & Parr, 2021), whereby the 

rate of change of each component within a Markov blanket. It suggests that the joint 



probability 𝑝 between internal states 𝜇 and external states 𝜂 mediated by blanket states 𝑏 

through the component 𝑝(𝜇,𝜂 |𝑏), whereby 𝜇 states are independent ⏊ from 𝜂 states 

belonging | to the blanket 𝑏, and is expressed as 𝜇 ⏊ 𝜂|𝑏. ⇔ represents biconditional logical 

connective (or equivalence) between two statements (i.e., assumes both statements are true), 

where if 𝜇 ⏊ 𝜂|𝑏 is true then 𝑝(𝜇, 𝜂 |𝑏) must be true. This equation, in a dynamical setting 

(Friston et al., 2021), this means that the rate of change for internal 𝜇,̇  external 𝜂̇, active 𝑎,̇  

and sensory 𝑠̇ states can only depend on two other states in accordance with this equation. 

The rate of change which preserves the conditional independence within this dynamical 

system can be denoted in below equation, for each component state between 𝑏 and 𝜂: 

 

𝜇 ̇ = 𝑓𝜇(𝜇,𝑠, 𝑎)         

𝑎 ̇ = 𝑓𝑎(𝜇,𝑠, 𝑎)         

𝜂̇ = 𝑓𝜂(𝜂, 𝑠, 𝑎)              

𝑠̇ = 𝑓𝑠(𝜂, 𝑠, 𝑎)                                                                                                                     

 
Here, 𝑠, 𝑎 comprise 𝑏, and the flow 𝑓 of a state such as an internal state 𝑓𝜇 is conditionally 

dependent on the structure of 𝑏. Equation 2 shows mathematically (like Figure 1 showed 

schematically), that the flows of internal 𝑓𝜇 and external states 𝑓𝜂  do not depend on one 

another. The Markov blanket refers to the structure of exchange between the organism and its 

environment (Friston, 2013; Kirchhoff, 2018; Parr & Friston, 2018), and specifically 

describes the self-organization across spatial and temporal scales (Hipolito, 2019; Palacios, 

Razi, Parr, Kirchhoff, & Friston, 2017; Ramstead et al., 2020).  Within this context, the 

variable of interest can be associated with the internal sates 𝜇 of 𝑏 whereby the parents of 𝜇 

which are the sensory states 𝑠 mediate the influence of eternal states 𝜂 and with the internal 

states 𝜇. 
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